Aligning Superhuman AI with Human Behavior: Chess as a Model System

> Reid McIlroy-Young¹ Siddhartha Sen² Jon Kleinberg³ Ashton Anderson¹

¹Department of Computer Science, University of Toronto

²Microsoft Research

³Department of Computer Science, Cornell University

July 2020

Superhuman AI systems are increasingly prevalent

Some domains humans are moving away from

• facial recognition, path finding, identifying photos of dogs

But other areas will continue see human participation

• poker, chess, some business decisions

Learning from Superhuman AI

In the domains where humans have been superseded but continue to participate, this raises the possibility that we could learn from them

Learning from Superhuman AI

In the domains where humans have been superseded but continue to participate, this raises the possibility that we could learn from them, or collaborate with them.

Superhuman Reasoning

Superhuman AI systems can be difficult for humans to understand, making it difficult for us to interact with or learn from them

How can we bridge the gap between the AI's behavior and ours?

Requirements

- Superhuman Al
- Observed Humans
- Diverse Humans

Requirements

- Superhuman Al
- Observed Humans
- Diverse Humans
- Parametrized Humans

Task

Predict the next move a human, at a specific skill level, will make during a chess game

Task

Lichess.org is a popular, free, open-source chess platform with over 1 billion games in its database

ELO Rating

ELO rating is a measurement of skill in a game, the larger the ELO rating the higher the skill

For testing we just use games from December 2019

- Create bins for each range of 100 rating points
- Oivide games into the bins by the ELO of both players
- Select 10,000 games from each bin, between 1000 and 2500

For each game we can then look at the mean move prediction accuracy of a model

What We Want

Stockfish Overview

Design Traditional Chess engine

Type Tree Search

Humanity Hand coded heuristics

Tuning Depth of tree to search

Stockfish

Leela Intro

Design Implementation of AlphaZero

Type Reinforcement Learning

Humanity Only rules of chess

Tuning Length of training

Results

Leela

Maia Intro

Design AlphaZero based deep neural net

Type Classification

Humanity Trained on 12 million human games each

Tuning Trained human skill

Results

Maia

Results

All

Human Errors

Conclusion

Mistakes Categorizing

Understanding Human Skill

Learning Aid

Conclusion

Further Information

Paper KDD 2020

arXiv arxiv.org/abs/2006.01855

Github github.com/CSSLab/maia-chess

Lichess maia1, maia5, maia9